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UNCLASSIFIED ABSTRACT

BUCKLING OF CIRCULAR CYLINDRICAL TR-0158(53820-10}-1
SHELLS WITH MULTIPLE ORTHOTROPIC September 1967
LAYERS AND ECCENTRIC STIFFENERS,

by Robert M. Jones

An exact solution is derived for the buckling of a circular cylincrical
shell with multipie orthotropic layers and eccentric stiffeners under
axial compression, lateral pressure, or any combination thereof.
Classical stability theory (membrane prebuckled shape) is .sed for
simply supported edgs boundary ccnditions. The present theory
enables the study of coupling between bending and extension due to
the presence of different layers in the shell and to the presence of
eccentric stiffeners. Previous approaches to stiffened multilayered
shells are shown to be erratic in the prediction of buckling results
due to neglect of coupling between bending and extension.
(Unclassified Report)
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NOMENCLATURE

ring spacing (Figure 1)

cross-sectional area of a stiffener

coefficients in stability criterion [Eq. (18)]
stringer spacing (Figure 1)

extensional stiffness of the layered shell
extensional stiffness of the orthotropic stiffness
layer in the x-(y-) direction

in-plane shearing stiffness of the orthotropic stiffness
layer

coupling stiffness of the layered shell

bending stiffness of the layered shell

bending stiffness of the orthotropic stiffness layer
in the x-(y-) direction

twisting stiffness of the orthotropic stiffness layer

Young's modulus of a stiffener

Young's moduli in x and vy directions,
respectively, of the kth shell layer

shearing modulus, E/{2(]1 + v)}, of a stiffenexr
shearing modulus of the k’Ch shell layer in x-y plane
moment of inertia ot a stiffener about its centroid

torsional constant of a stiffener

1A comma indicates partial differentiation with respect to the subscript
following the comma. The prefix & denotes the variation during
buckling of the symbol which follows.
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NOMENCLATURE (Continued)

. th
function of material properties of the k

layer [Eq. {2)]
length of circular cylindrical shell (Figure 1)

number of axial buckle halfwaves

moments per unit length

number of circumferential buckle waves

number of layers

in-plane forces per unit length

applied axial and circumferential forces per unit
length

external or hydrostatic pressure

shell reference surface radius (Figures ) and 2)

thickness of kth shell layer

= axial, circumferential, and radial displacements from

a membrane prebuckled shape
axial, circumferential, and radial coordinates on shell

reference surface (Figure 1)

= distance from stiffener centroid to shell reference

surface {Figure 1), positive when stiffener on outside

= gtrains

- variations in reference surface strains [Eq. (S)J

distance from inner surface of layered shell to outer
t

surface of k h layer

distance from inner surface of layered shell to

reference surface




vxyD(v ny)

.
x} O'Y) TxY

X1 Xar %3

Superscript

k
Subscripts
k
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NOMENCLATURE (Continued}

= Poisson's ratio for contrzction in the y(x) direction

dve to tension in the

x(y) direction

so-called extensional Poisson's ratio for contraction

in the y-(x-) direction due to tension in the x-(y-)

direction

so-called bending Poisson's ratio for curvature in the

y-(x-) direction due to moment in the x-(y-) direction

1}

stresses

variations in reference surface curvatures [Eq. (6)]

kth shell layer

k™ shell layer
ring

stringer
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SECTION I

INTRODUCTION

The first work in the area of stability of eccentrically stiffened
shells was done by Van der Neut (Ref. 1) about twenty years ago.
However, his conclusion that the buckling load under axial compres-
sion of an externally stiffened shell can be as high as two or three
times that of an internally stiffened shell went essentially unnoticed.
More recently, Baruch and Singer (Ref. 2) and Block, Card, and
Mikulas (Ref. 3) presented theories which are considered basic in the
field, Since 1965, work in the area of eccentrically stiffened shells
has expanded so much that it is impractical to mention more than a
few significant papers. McElman, Mikulas, and Stein (Ref. 4)
extended the original work to include the effect of stiffeners on vibra-
tion and flutter. Correlation between theory and experiment was
reported for static buckling loads by Card and Jones (Ref. 5). The
effect of initial impesfections was considered by Hutchinson and
Amazigo (Ref. 6). Block (Ref. 7) treated discrete ring spacing,
prebuckling deformation, and load eccentricity, Finally, plastic
buckling was discussed by Jones (Ref. 8).

The object of the present paper is to extend previous theories
to consideration of stability of circular cylindrical shells with
multiple orthotropic layers and eccentric stifleners (see Figure 1).
Classical stability theory, which implies a membrane prebuckled
shape, is used for the simply supported edge boundary conditions

6NX TvETws=s 6Mx = 0. The layers have orthotropic material
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Figure 1. Stiifened Multilayered Shell

properties with the principal axes of orthotropy coincident with the
shell coordinate directions. In accordance with most previous
theories, the stiffeners are treated as isotropir one-dimensional
beam elements and are averaged or '""smeared out' over the stiffener
spacing. The torsional rigidity of the stiffeners is accounted for in
an approximate manner. The present theory enables the study of
coupling between bending and extension due to the presence of
different layers in the shell and to the presence of eccentric

stiffeners,
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SECTION II
DERIVATION OF THEORY

Expressions are obtained for the variations of stresses during
buckling in the kth layer of a multilayered shell in terms of the variations
of strains during buckling. Subsequently, the variations of stresses are
integrated over the chell and stiffeners in order to obtain expressions
for the variations in forces and moments during buckling. Finally, the
variations in forces and moments are substituted in Donnell-type
stability differential equations which are then solved to yield a closed-
form stability criterior in terms of the geometric and material properties
of the stiffened multilayered circular cylindrical shell.

A, ORTHOTROPIC STRESS-STRAIN RELATIONS

The stress-strain relations for an orthotropic material can be

written as

k K K
“x T En i T Epsy
kK _ .k K
o, Koo t Ky - { (1)

k k
Xy K33 ny

k _ Rk < k k)
S Exx/l'vxy Vyx

Kk . vk Ek /l-vk vk)
12 Xy Txx Xy yX

p (2)
sz,\ - gk /(l-vk vk>
“ Yy Xy yXx
k k
K33 - ny J

wherein the superscript k denotes the kth layer. The quantity

k k

Exx (Eyy) is Young's modulus in the x (y) direction, G:: is the




k
Xy
ratio for contractior. in the y (x) direction due to tension in the

shear modulus in the x-y’ plane, and v (V;(x) is the Poisson's

x (y) direction. There are apparently five material constants per

layer; however, because of the re:iprocal relations (V;}:y E:]:x =
v;(x E;cy), there are actually only four independent constants.

B. VARIATIONS OF STRESSES AND STRAINS DURING BUCKLING

During buckling, the stresses vary from their prebuckiing values.

Let the variation be denoted by & ; then, froin Eq. (1)

k k k
) =
U'x K11 6ex + K12 éey ]

k _ .k k .
60'Y = K126€x + KZZGGY | (3j

k k
6 =
Txy K33 6ny ]

where 6ex, 6€Y’ and 6ny dendte the corresponding variations

in the strains during buckling. Because of the Kirchhoff-Love hypothesis,

the variations in strains during buckling are

1)

Se € + zX

x 1 1
6ey = € + ZXZ (4)
Ny = 3 F 2X5
The =z coordinate is measured from an arbitrary reference surface
(see Figure 1). In Eq. (4), STRLY and €, are the variations of the
reference surface strains
el = u’x
G = v, twR (5)
¢ u,y + v,
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and X 1’ XZ’ and X5 are the variations of the reference surface

curvatures
X1 = - w, %
X2 = - w, vy
X3 = - 2w, xy

(6)

Upon substitution of Eq. (4), the variations in stresses in the kth layer

can be written as

k _ k
So = K11 (el+zXl) + K + zX

k(e
x 12 2

k _ ok k
6o & = K12(€1+ZX1) + KZZ (e2+zX

k _ k .
6T = K33(e3+z2(3)

2)

2) y (7)

J

C. VARIATIONS OF FORCES AND MOMENTS DURING BUCKLING

The variations of forces and moments during buckling are obtained

by integration of the variations of stresses over the shell layers and

stiffeners. The effect of the stiffeners on the variations of forces and

moments is averaged or ""smeared out" over the stiffener spacing.

N K ]
o =§ }[66 dz J’”f&Cr da
X _ X b X 3
=1 k As

a Kk 1
&N =3 60 X4z + +—Jb0c qga
Y k= a'A y r
r

N
k
6N - f{n d
Xy %:'ltk sy

3

) (8)
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N k 1
6M_ =Y [ b0 " zdz + f 6o _ zdA
x £ x b x 8

( (9)

6'rk zdz + —ZL X
xy a 3
k P,

5
M =
X =17

where t denotes the thickness of the kth layer and N is the number
of layers. The variations of stresses for the stiffeners are based on
uniaxial isotropic reductions of the orthotropic stress-strain relations.

The integrations in Eqs. (8) and (9) yield

6N_ = (B +EA_/b)¢ “B e, + (C +stsAs/b)x1W
+ CX%,

GNY = Blzel + (B22+I£:rAr/a)e2 + CIZXI > (10)
+ (C,, +2 E A _/a)X,

SN, = B33y * C33X; J

3\

. _ _2
8M_ = (C, +lv,szss.fsxa/b)e1 + C,,e. + (D +stsAs/b

12 2 11
+ESI$/b)X1 + DIZXZ

6My = Clzf1 + (C22+errA1~/a)€2 + DIZXI
y (11)
+ (D,, +Z°E A /a + E 1 /a)X Cont
22 roror rr 2 ont.
next
page

v e b




Cont.

from
6MxY = - C33e3 - (D33+Gst/2b)x3 prev.
page
6Myx = c33e3 + (D33+GrJr/2a)X3
where
N K ]
Bij = El K1J (6k - 6k-1)
N
-1y kX[(s2- 5 2) :
Cij = 22 Ki'[({’k‘ S1) - ALy - °:<-1)]
j 2,
y (12)

X

N
1 k[(:3 . 3 )
Dy = 3:4:4 [(6k' 6k-l) - 3A(6k‘ 6k.l)

v 326, 5, )] )
The stiffnesses in Eq. {12) are due to Ambartsumyan (Ref. 9) and depend
on the location of the reference surface (see Figure 2). The reference
surface can be changed by varying A in order to studv different
loading and boundary conditions. Geier (Ref. 10) obtains expressions which
arc more simple in appearance than Eq. (10), but which are more

difficult to utilize.
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Figure 2, Cross Section of an N-Layered Shell
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D, STABILITY DIFFERENTIAL EQUATIONS

The Donnell-type stability differential equations for circular
cylindrical shells subjected to combinations of axial compression and

lateral pressure are

N + 6N =0 )
x, X xy,y
6N + 6N = 0
Xy, X Y, ¥
. (13)
- &M + oM - §M - M + 6N /R
Xy XX Xy, Xy X, Xy Y, YY y
N w, + N w, =
x X y vy )
and the alternative force and geometric boundary conditions at x = 0

and L are chosen from the following sixteen possibilities (any set of

four alternatives in the followirg pairs constitutes a set of boundary

conditions).

6N = 0 or u =0

6ny = 0 or v = 0

> (14)
oM oM + yo = 0 or w = 0
X, X vX,y X ’'x
M =0 or w, = 0
X X J

Upon substitution of the expressions for the variations of forces and
moments during buckling [Eqs. (10) and (11)] and the variations of

reference surface strains and curvatures [Egs. (5) and (6)] , the




stability differential equations become

. (By) +EA /b u,  + By (v,  +w, [R)

11

+ By lu, v, ) (Cpy ¥ zEA /b)w,

- (Gt 20w, = 0

Biahyy T By 1 E AR, W, /R)

+ v’xx) - (C12 + 2C

B33 (u’xy ¥ 33) Ws Xy

- +z E =
(Cpp +Z,E A Ja)w, . = 0

(BIZ/R) U, - (C11 + zSEsAs/b) Uy s " (CIZ + 2C33)(u

’Xyy
+ v,xxy) + (1/R)(BZ2 + ErAr/a.)(v,y + w/R)

. + (C22 + errAr/a) v, — (ZCIZ/R) W) ex

- -2
+ (Z/R)(C22 + errAr/a) w, vy + (D11 + stsAs/b

* E_1_/b) Wysomx T (4Dg3 +2D 5 4 Gst/b

o , =2 .
+ Gr. r/a, w, - (D22 + errAr/a + Erlr/a) w, -,

+ N_w, + N w, = 0
X ?Txx y ’yy

13

STABILITY CRITERION

It is desired to find the solution to the stability differential
cquations for the simply supported edge boundary conditions

6N’-“J?W‘-6MX‘—O (16)
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The following buckling displacements satisfy the boundary conditions of

Eq. (16):
u = u cos{mnx/L) cos (ny/R)
v = ¥ sin(mnmx/L) sin (ny/R) (17)
w = W sin(mmx/L) cos (ny/R)

(where U, V, and W are the amplitudes of the buckling displacements) and

are substituted in the stability differential equations [Eq (15)] . In

order to obtain a nontrivial solution to the resulting equations, the

determinant of the coefficients of ©, Vv, and W must be zero, and the

following stability criterion results:

'ﬁ’x(mn/L)z ¥ Ny(n/.w)z = AL+ A [B13812 - A8,

33 23 V3
AjBAgp -8,
| (18)
\ Ajphyg - Ajghy,
+ r—
13 2
Ao -4
where
A.. - (B. +E A /b)(mn/L)% + B..(n/R)% ’
11 117 Fss 33
Alz z (1312 + B33)(m1r/L)(n/R)
) - , 3
}-\13 = (BIZ/R)(mv/L) + (C11 + stsAs/b)(mn/L)
2
+ (Cy, * 2C4;)(mn/L)(n/R) ) (19)
Cont.
- 2 , 2
Ayp = Byg(mn/L)" 4 (By, + E A Ja)(n/R) next
2 . a
Ayy - (Cp, +2C)(mm /LY (n/R) + (1/R)(B,, + E_A _/a)(n/R) bage
{ (C.. +Z E A /a)(n/R)
22 r'ror

10
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- - 4
A33 = (D11 + Esls/b + zs ESAS/b)(rmr/L) \ (19)
2 2 Cont.
+ (4D, + 2Dy, ¥ Gst/b +GrJr/a)(m1r/L) (n/R)
from
-2 .4 - 2
+ (DZZ + Erlr/a t z, ErAr/a)(n/P" + (Zulle)(mv/L) prev.
- 2 2 page
+(2/R)Cpp ¥ errAr/a)(n/R) T (I/R"}B,, + E A _/a) J

The solution represented by Eq. (18) reduces to the s~lution of
Ref. 3 for stiffened single-layered isotropic circular cylindrical shells.
In addition, stiffener eccentricity is more obviously accounted for in the
foregoing derivation than in the work of Geier (Ref. 10)

The buckling load under axial compression is obtained from
Eq. (18) by equating K’y to zero and solving for ﬁx’ Similarly, the
buckling load under lateral pressure is obtained by equating ﬁx to zero
and solving for ﬁy(f\fy = pR/t). Finally, the buckling load under
hydrostatic pressure is obtzined by equating Nx to Ny/z and solving for
Ny' In addition, if ﬁx(ﬁy) is fixed, the critical value of Ny(ﬁx) can
be found. In this manner, an interaction curve between axial compression
and lateral pressure can be cbtuined,

Because of the numerous parameters in Eq. (18) and the need to
investigate a large range of buckling modes to determine the lowest
buckling load, it is necessary from a practical standpoint to use a digital
computer for numerical work. In the computer program (see Appendixes

A and C), for a given number of axial halfwaves, m, and circumferential

waves, n. in the buckled shape, the appropriate buckling load is found.
The number n is varied in an inner DO loop for a fixed m until aj}!

relative minima of the buckling load are found within a given rang. of

11
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values of n. The number m is then varied in an cuter DO loop so that

Cas v

all relative minima are found. Finally, the absolute minimum buckling

e load is selected from the relative minima.
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SECTION 111

- NUMERICAL EXAMPLE

. Because of the many geometrical properties in the theory,
meaningful general results cannot be presented. AcccrZdingly, a specific
numerical example is given to illustrate applicaticn of the theory. The
results are compared with results of previous approaches to the same
problem.
For this example, the stability of a ring-stiffened circular cylindri-
cal shell with two isotropic layers under hydrostatic pressure is considered.

The properties of the layers are

E, = 44x 10° psi E, =2x 106psi
Vl =) V2 = 0.4
t, = 0.04 in, t:2 = 0.3 in,

The rings are of rectangular cross section with a height of 0. 25 inch
and a thickness of 0.06 inch. The rings are on the inner suriace of
layer one and have the same material properties as layer one. The shell
has a length of 12 inches and a radius of 6 inches to the middle surface
of layer one (which, in this case, is also the reference surface).

The hydrostatic buckling pressure of the above configuration is
shown as the solid line in Figure 3 as a function of ring spacing. The

results shown are for general instability (backling in which the rings

participate). The buckling pressures for panel instability (buckling
between rings) are much higher thar the present results and, hence, do

not goverr the stability of the present configuration. OGiher failure criteria,
e.g., yielding, are ignored for the purposes of this illustration of the

present analysis technique. The dashed curve in Figure 3 represents

13
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an orthotropic stiffness approach to the problem and is from 3 to 9
percent lower than the results from the present theory. These lower
results are due to neglect of coupling between bending and exten-

sion of the layered shell and the eccentric stiffeners in the ortho-
tropic stiffness approach. The solid curve with a single dot
represents a stiffened shell with a single equivalent Poisson's ratio
for bending (VD = 0.331) used in both layers (Ref. 11) and is from

7 to 11 percent lower than the results of the present theory. Finally,
the solid curve with two dots represents a stiffened shell with a single
equivalent Poisson's ratio for extension (vB = 0.115) used in both

layers (Ref. 11) and is from 14 to 18 percent lower than the results

PR O S s cis USSR VE EUS AL SR EEEEER e

of the present theory. The lower results for D and vg are due to
neglect of coupling between bending and extension of the two shell
layers. Note that al. approaches previous to the present theory are
conservative for this :xample, i ¢., they yield lower buckling
pressures than tan actually be realized by the stiffened shell. For

other problems, the previous apprcaches can yield unconservative

results (Ref. 11). Thus, the importance of coupling between bending

and extension should not be overlooked.

i5
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SECTION 1V

CONCLUDING REMARKS

An exact solution, within the framework of classical stability thecry,
is derived for the buckling of a circular cylindrical shell with multiple
orthotropic layers and eccentric stiffeners under axial compression,
lateral pressure, or any combination thereof. The simply supported edge
boundary conditions are 6Nx = v=w-= 6Mx = 0. Thus, the present
solution can be regarded as a lower bound on results for practical shells
if initial imperfections, prebuckling deformations, and efiects of discrete
stiffener spacing are ignored.

A numerical example is given to illustrate the effect of coupling
between bending and extension due to the presence of different layers in
the sheil and to the presence of eccentric stiffeners. Comparison of the
present theory is made with previous approcaches sucli as use of a single
equivalent Poisson's ratio in all layers of a layered shell and orthotropic
treatment of stiffened shells. The buckling predictions of the previous
approaches, in which coupling is neglected, aie seen to be erratic in that
they are sometimes conservative and somretimes unconservative. Thus,
the importance of ccupling beiween bending and extension should not be

overlooked,

17
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APPENDIX A

DESCRIPTION OF COMPUTER PROGRAM

A computer program was written to evaluate the closed-form
stability criterion, Eq. (18), for an arbitrary range of values of the
buckling mode parameters m and n and to select subsequently
the lowest buckling load in the range. Program card decks are
available upon request to the Aerospace Corporation, San Bernardino
Operations, Mathematics and Computation Center. Specific charac-
teristics and theusage of the program are described in the following
discussion.

A.l1 GENERAL CHARACTERISTICS

The basic capability of the program is represented by Eq. (18)
which is valid for the stability of circular cylindrical snells with
multiple orthotropic layers and eccentric stiffeners under axial
compression, lateral pressure, or hydrostatic pressure. The
boundary conditionz at the edges are & Nx T v=Ews=s (SMx = 0. The
orthotropic material properties for each layer of thickness, tk

k k k

k
are Exx s Eyy , vxy , Vyx (recall that because of the reciprocal

relations only three are independent) and G::y . It should be noted

¥

that the principal axes of orthotropy must coincide with the shell
coordinates. The geometrical properties for the sti‘feners are:
area (A), moment of inertia about the stifiener centroid (I), eccen-
tricity (z), torsional constant (J), and spacing. The stiffeners are
isotropic; hence, E and v are the only material properties required

Because mainly algebraic operations are performed in the pro-

gram, the execution time is very small (less than 1 second per case).
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As far as is possible, mnemonic representations are used throughout

the program.

A.2 ORTHOTROPIC STIFFNESS LAYER, OSL

Block, Card, and Mikulas included an orthotropic stiffness
layer in their theory (Ref. 3) in order to treat corrugated shells, etc.
In the present program, a similar layer can be used in place of the
first layer of the multilayered shell if the reference surface is chosen
to be the middle surface of the orthotropic stiffness layer. The
orthotropic stiffness definitions reduce to the usual definitions for

an isotropic shell, 1. e.,

B, = E =B =Et/(1-%) N
Byy * [(1-v)/2) B=Et/[2(1+v)]
Dx=Dy=D=Et3/[12(l-v2)] > (A-1)
D, = [(1-v)/2] D> Et>/ [24(1 + )]
YxyB = VyxB " YxyD ~ YyxD * ¥
/

The orthotropic stiffnesses must satisfy the reciprocal relations

B and v

= vyxB y xyDDx = D . It is important to note

nyBBx B Vny y
that vxyB , etc are, in some cases, not solely material properties,
but arc also affected by the geometry, e.g., corrugated or layered
shells.

The orthotropic stiffness layer was used to describe the two-
layered eccentrically stiffened shell in Section III, Numerical

Example, in order to obtain the curve labeled Orthotropic Stiffness

Approach in Figure 3. Note that this approach neglects coupling
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between bending and extension of the stiffeners and the layered shell
ard also neglects coupling between bending and extension of the
layers.

Eccentric stiffeners can be added to the orthotrcpic stiffness
layer if the eccentricity is properly accounted for. The eccentricity,
ZR or ZS, is ordinarily input as the distance from the centroid to
the base of the stiffener. Subsequently, the cccentricity is adjusted
in the program to be the distance from the centroid of the stiffener to
the arbitrary reference surface of the layered shell. However, when
the orthotropic stiffness layer (OSL) is used, the reference surface
is fixed at the middle surface cf the ©SL . In order that the stiffener
bend about the middle surface of the layer to which it is attached,
it is necessary to modify the input eccentricity such that, when
one-half the ©SL thickness is added, the eccentricity totals cae-
half the thickness of the layer to which it is attached plus the distance

from the base to the centroid of the stiffener.
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A.3

INPUT PARAMETERS

The following is a list of input parameters and their format and

definitions:

2 XakaiatalalateinkaialakalaialainiaiakalakaalaRalaRa oo RaR o NaRakal

OO0 OONO

SCARD 1 FORRAT (80K} -~ PROBLER TITLE

SCARD 2 FORMAT(310,6F10.0}
WL - NUMBER OF LAYERS INCLUODING ORTHOTROPIC STIFFNESS LAVER
SRESTRICTED TO 9 IN DIMENSION LN{9) ANO BY FORMAT NC.8. THE USUAL THIN
SHELL LIMRITATIONS MUST BE TAKEN INTO CONSIDERATION AS MELL.
0SL -ORTHOTROPIC STIFFNESS LAYER
IF EQUAL TO 0.,NO OSL
IF EQUAL TG 1.,0SL REPLACES LAYER ONt
LOAD - COCE NANE FOR TYPE OF LOAD
IF EQUAL TO 1., AXIAL COMPRESSION
IF EQUAL TO 2.4 LATERAL PRESSURE
IF EQUAL TO 3., HYDROSTATIC PRESSURE
MOMF ~ INITIAL AND FINAL VALUES OF Me THE NUMBER OF AXIAL HALF-WAYES
*M0 CANNOT BE ZERO IN THE AXIAL AND HYOROSYATIC LOADING CONDITIONS.
*N0 SHOULD BE )| FOR FINITE LENGTH SHELLS.
®IF NO ABSOLUYE MINIMUM LOAD IS FOUNC OR IF THE RELATIVE NININA ARE
DECREASING WHEN M=MF, A MESSAGE IS PRINTED STATING THAT TKE RANGE
ON M IS INSUFFICIENT TO OETERMINE AN ABSOLUTE MINIMUM,
¢THE INTERVAL (MO,4%MF) IS EXAMINED INDEPENDENTLY FOR THE AXISYMMETRIC
BUCKLING LOAD WHICH IS THEN PRINTED AND ALSC SAVED FOR COMPARISON
WITH THE ASYMMETRIC BUCKLING LOAD.
STHE LONGER THE SHELL, THE hIGHER MF MUST BE.
NOsNF ~ INITIAL AND FINAL VALUES OF Ny THE NUMBER OF CIRCUMFERENTIAL
HAVES
STHE ENTIRE INTERVAL (NOJNF) IS EXAMINED EVEN IF A RELATIVE
MINIMUM IS FOUND WITHIN THE INTERVAL.
*NO IS NORMALLY 2 BECAUSE A SEARCH FOR THE AXISYMMETRIC
BUCKLING LOAD IS AUTOMATICALLY PROVIDED IN THE AXIAL
ANG hYDROSTATIC PRESSURE LOADING CONDITIONS.
$NO CANNOT BE ZERC IN THE LATERAL PRESSURE LOADING CONCITION.
$KO AND NO CANNOT BCTH BE LERQ IN THE HYDROSTATIC PRESSURE
LOADING CONDITION.

SIF MO RELATIVE MININUN 1S FOUND OR THE LOAD IS AGAIN
DECREASING AFTER ONE MININUM HAS BEEN FOUND WHEN N=NF,
A MESSAGE IS PRINTED STATING THAT THE INYEVAL IS INADEQUATE.
STHE THINNER THE SHELL, THE HIGHER NF MUST BE.

2CARDS 3 THROUGH NL#2 ~ FORNAT(IE10.3) - ORTHOTAOPIC LAYER PROPERTIES
LN(1) - LAYER NUMBER

EXX(1) - MODULUS OF ELASTICITY OF THE ITH LAYER IN THE X-OIRECTION
EYY{1) <~ MOOULUS OF ELASTICITY OF THE ITH LAYER IN THE Y-DIRECYION

NUXY(TD) POISSON®S RATIO FGR CONTRACTION IN THE Y-OIRECTION DUE TO
TERSION IN THE X-DIRECTION
NUYX(1) - POISSON'S RATIO FCR CONTRACTION IN THE x-OIRECTION OUE YO

TENSION IN THE Y-OIRECTION
SNOTE THAT 8Y THE RECIPROCAL RELATIONS NUXYSEXXmNUYXSEYY,
GXY(§) - SHEAR MODULUS OF ITH LAYER FOR THE XY-PLANE.
wn - THICKNESS OF THE ITM LAYER
#1F AN ORTHOTROPIC STIFFNESS LAYER 1S USED, ALL PROPERTIES OF THE
FIRST LAYER ARE ZERO.
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SCARD OSLS{NLO3) ~ FORMAT(S5EL0.3) ~ ORTHOTROPIC STIFFMESS LAYER PROPERTIES

BX ~ EXTENSIONAL STIFFNESS IN X-DIRECTION

8Y - EXTENSIONAL STIFFNESS IN Y-DIRECT(ON

BXY <~ SHEAR STIFFNESS IN XY-PLANE

NUXYB~ EXTENSIONAL POISSON®S RATVIO FOR CONTRACTION IN THE Y-DIRECTION
DUE TO TENSIOM IN THE X-OIRECTION.

TOSL ~ MAXIMUG ThHICKNESS OF OSL (USED AS T(1}) IN STIFFMESS EQUATIONS
FOR LAYERED CYLINDER)

SCARD OSLO(NL44) ~ FORMAT(4EL10.3) ~ OSL PROPERTIES, CONTIMUED
DX - BENDING STEFFNESS IN X-OIRECTION
DY -~ BENDING STIFFNESS IN Y-DIRECTION
DXY - TWISTING STIFFNESS OF XY-PLANE
NUXYD- BENDING PCISSON'S RATIO FOR CURVATURE IN THE Y-DIRECTION
OUE TO MOMENT IN THE X-~-DIRECTION

SCARD NL+2%0SL#3 - FORNAT(6EL10.3) - RING PROPERTIES

ER - MODULUS OF ELASTICITY

AR~ CROSS~SECT IONAL AREA

IR - ECCENTRICITY (MEASUREC NEGATIVELY INNARD FRON INNER SURFACE OF
COMPUSITE SHELL YO RING CENTROID IF RINGS ARE INTERNAL -~
POSITIVELY OUTWNARD FRGK QUTER SURFACE IF RINGS ARE EXTERNAL)

IR -~ MOMENT OF INERTIA OF RING ABOUT ITS OWN CENTROID

GRJR~ SHEAR MODULUSSTORSION CONSTANT OF CROSS SECTION

A - SPACING OF RINGS

SCARD NL+280SL+A -~ FORMAT(6EL10.3) — STRINGER PROPERTVIES
ESyASe2S¢15¢GSJIS+B — CORRESPCND TO ABGVE RING PROPERTIES

SCARD NL+280SL+5 —~ FORMAT(3E10.2) - BASIC GEONETRY

L - LENGTH OF CIRCULAR CYLINORICAL SHELL

R - RADIUS TO REFERENCE SURFACE
*%¥UST BE TO MIDDLE SLRFACE OF OSL IF AN OSL IS PRESENT

DELTA~ DISTANCE FROM INNER SURFACE OF LAYERED CYLINDER TO REFERENCE
SURFACE
*MUST BE 1/200SL THICKNESS IF AN OSL PRESENY.
$SHOULD GET OIFFERENT AXIAL BUCKLING LOADS WHEN DELYA VARIED.

P aXaXaXakatakztataiakstatakatatalatatata o taati B R al o N o N o N o R o Nua N ol o Ko X ol
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A.4 OUTPUT

prwtregy

The output for each case is printed on one page if the sum of
the number of layers, LN, and the number of axial buckle halfwaves,
M, does not exceed 25 and, if, in addition, there is no more than
one relative minimum buckling load per value of M . If these con-
ditions are not met, additicnal pages are used as needed.

First, a user-specified case identification is printed. Next, the
input quantities are printed so that input errors can be identified.
The orthotropic layer properties are printed and are followed by the
orthotropic stiffness layer (PSL) properties, if any. Next, the
ring and stringer properties are printed. Finally, the basic
geometry quantities, shell length, radius, and reference surface
location, are printed.

After execution of the program, the buckling load for axi-
symmetric deformation (absolute minimum in the range from M = 1
to M= 4%*MF) is printed along with the value of M at which it
occurs. Subsequently, the asymmetric buckling loads (relative
minima for each value of M for the range from N =2 to N= NF)
are printed. The final result is the absolute m’nimum (axisymmetric
or asymmetric) buckling load for the entire range of M and N.

A typical output page is shown in Appendix B,
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APPENDIX B

EXAMPLE PROBLEM

The example chosen here is the configuration discussed in
Section IlI, Numerical Example, in the main bedy of the report,
i.e., a ring-stiffened circular cylindrical shell with two isotropic
layers under hydrostatic pressure. Pertinent geometrical and
material properties are given in Sectionlll. Ring spacing for this
example is 3 inches. The input data are shown in Table B-I,
Figure B-1 illustrates the input form, and the computer output is

shown in Figure B-2.

25

cr e o R Y




Table B-I

INPUT DATA FOR EXAMPLE PROBLEM

CASE IDENTIFICATION:

CONFIGURATION OF FIGURE 3 - ACTUAL NUI

Lo sidr o

TR

Symbol Vaiue Symbol Value
NL LN (2) 2
PSL 0 EXX(2) 2 x 10°
LOAD 3 EYY(2) 2 x 10°
MO 1 NUXY(2) 0.4
MF 10 NUYX(2) 0.4
NO 2 GXY(2) 0.7179 x 10°
NF 20 T(2) 0.3
LN(1) 1 ER 44 x 10°
EXX(1) 44 x 10° AR 0.015
EYY(1) 44 x 10° ZR -0. 125
NUXY(1) 0 IR 0.7812 x 10°%
NUYX(1) 0 GRJIR 396
GXY(1) 22 x 10° A 3
T(1) 0. 04 L 12

R 6

DELTA 0.02
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APPENDIX C

FORTRAN LISTING OF COMPUTER PROGRAM

ELASTIC BUCKLING OF SEMPLY SUPPORTED, ECCENTRICALLY STIFFENED CIRCULAR

CYLINODKICAL ShELLS WITH MULTIPLE CRTHOTROPIC LAYERS UNDER AXIAL COMPRESSIOM,

LATERAL PRESSURE OR HYDROSTATIC PRESSURE

READ STATEMENT FORMATS - - BOLS
1 FUSMAT(8CH 8oLs
1 80LS
2 FIRMATII1C,7F10.0) 80LS
3 FORMAT(BEL1C.3) 8CLS
WRITE STATEMENT FORMAYS -~ - sOLS

4 FORMAT(90H ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIBOLS
1FFENED CIKCULAR CYLINORICAL SFELLS/5TH wITH MULTIPLE ORTHOTROPIC LBOLS
2AYERS UNDER AXIAL COMPRESSION} 8CLS

5 FORMAT{9CH ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STI80LS
IFFENED CIRCULAR CYLINDRICAL SHELLS/S6H WITH MULTIPLE ORTHOTROPIC LBCLS
2AYERS UNDER LATERAL PRESSURE} 80LS

6 FORMAT(90H ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIBOLS
1FFE* €D CIRCULAR CYLINDRICAL SFELLS/60H WITH MULTIPLE ORTHOTROPIC LBOLS

2AYERS UNCER HYDROSTATIC PRESSURE) BOLS
T FORMAT(/4H MC=F4.09S5X3HMF=F4 .0y SX3HNOxF4.095X2HNF=F4.0) BCLS
8 FOIMAT(/15H PROPERTIES OF 411,19H ORTHGTROPIC LAYERS/6H LAYER; TX3IHBOLS
1EXXy 12X3HEYY s L 2X4HAUXY » 1 1IX4HNUYX 9 L1 XIHGXY o L2XINT) BOLS
9 FORMAT (F4.094XS13.69512XEL3.6)) eoLs

10 FORMAT(/39+ ORTHOTROPIC STIFFNESS LAYER PROPERTIES/SH BX=Ell.4,3X80LS
1IHBY=EL1L.493X0HBXY=ELL .49 3X6HNUXYBSEL L o4/5H DXxZ11.4,3X3H0OY=E1] .4BCLS
293X4HDOXYZELL o493 XOHNUXYD=E1Ll, 4¢3 XSHTOSL=ELL.4) B80LS

11 FORMAT{/16H RING PROPERTIES,32X19HSTRINGER PROPERTIES/SH ER=E11.48CLS
1oSXIHIR=ELLeby 15XIHESSEL 1. 49 SXIHISELL.4/5H AR=ELL.4,3XSHGRIR=ELLBCLS
2.49)SXIHASRELL o494 3XSHGSISSELL.4/5H 2R=E11.4,6X2HARELY 4,1 5XIHZS=EBOLS

311.496X%2HB=EL].4) 8CLS
12 FORMAT(/15h BASI( GEOMETRY/SH  L=Ell.4,3X2HR=E13,.6,3X6HOELTA=EL2.8CLS
15) BOLS

13 FORKAT (/22 PINIMUM NX FCR N=C 1S5E14.656H AT MsF4,.0/79X1HM,TX21HREBCLS
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LLATIVE RINIRA OF NXe TX1MHN)

s0LsS

14 FORMATI/21H RINIMUR P FOR Ne0 [SoELlG.6o6H AT NaF4.0//9X10MTX20MRESOLS

ILATIVE RININA OF P,8X10N)
15 FORMAT(/SX1HN, TK20MRELATIVE NININA OF P,o8X1HN)
16 FORMATITXF4.0,08XE14.6910XF4.0)
17 FORMAT(/21H ABSOLUTE NINSRUN RXSEL4.6y5X2HN=FA .04 SA2HNF4.0)
18 FORKAT(/20% ABSOLUTE NINIMUM PuEL4.6,5X2HR=F4,0,5X2HN=F4.0)
ERROR MESSAGE FORMATS

LS
SOLS
sOLS
S0LS
sks
BOLS

19 FORMAT(109M THE RELATIVE MINIMA ARE STILL DECREASING, SO TME RANGESOLS
1 ON K IS INSUFFICIENT TO DETERNINE AN ABSOLUTE MININUN/LEM THE LASBOLS

2T VALUE [SoE14.6960 AT MeF&.0)

S0LS

20 FORMAT(82H TME LOAD IS DECREASING, SO THE RANGE ON M IS INSUFFICIEBOLS

INT TO ODETERRINE ALL RINIMA)

soLs

21 FORMAT(/30h EQUAL OR MEAR EQUAL ORDINATES/TXF4.0,8H ORDNNLI=E14.6, BOLS

LI0XFA,0/TXF4.0,8H ORDNSE14.6,10XF4.0//)

80LS

DIMENSION K11(9)oK12(9),K22(9) 4K3II(9) 205 (9)EXX(DILEVYINI JNUXY(P)BOLS

1oNUYXI9) sCXY{9) o T(9),LN(9)}
RESL IR, IS MoMOs NF o MPL oNgNO o NF (NR o NUXY o KUY X s NUXYD o NUXYD o Lo LOAD
IK13oK12,K22,K33,LNoNNL )
P123,14159265
READ INPUT DATA
100 READ{5,1)
READ(S592INLOSL,LOAD o MOy NF 3 N3y NF
WRITE T(TLE OF OATA AND PROBLENMN
WRITE(6,1)
WRITE TYPE OF LOADING AND RANGE Ch M AND N
IF(LOAD.EQel.) WRITE(6+4)
IF(LCAD.EQ.2.) WRITE(645)
IF(LCAD.£Qe3.) MRITE(646)
WRITE(697) MCo MF g NGy NF
READ ORTHOTROPIC LAYER PROPERTIES
DO 110 I=1,NL
11C READ(553) LN(EDJEXXLE)SEYY LDy NUXY(I)oNUYTX(T),GXY(I)oT(1)
IF(OSLL.EQ. 1. .ANDSNL.EQel) GO TL 130
WRITE ORTHOTRCPIC LAYER PROPERTIES
NRITE{(6,8) NL
00 120 I=1,NL
120 WRITE(699) LNCIYoEXXCIDoEYY (L) 4 NUXYUT)oNUYXIT)oGXY(I)yTL)
TEST FOR PRESENCE OF CRTHOTROPIC STIFFNESS LAYER
TEfNSY e Y, 60 TG 13C
ZERC OUT PREVIOUS OKTHOTRUPIC STIFFNESS LAYER PROPERTIES
BX=0,
B8Y=0,
Bxvy=0,
NUXYB=0,
T0SL=0,
ox=0,
DY=0.
0Xvy=0,
NUXYD=0.
GO T0 140
READ ORTHGYROPIC STIFFNESS LAYER PROPERTIES
130 READ(S5,3) BX,BY,BXY NUXYB, TOSL
T{1)=TOSL
READ(593) CX40Y4DXYoNUXYD
WRITE ORTHOTROPIC STIFFNESS LAYER PROPERTIES
WRITE(G6910) BXoBY BXYoNUXYByDX,0Y,0XY4NUXYD, TOSL
READ ANU WRITE RING AND STRINGER PROPERTIES
140 REATi593) ERGARVIRHIRZGRJIRA
REAC(S¢3) ESsAS92S5915¢65J4548
WRITE(G6oll) ER¢IRIESISeARGRIRYASGSUS, IR A4 1S58
READ AND WRITE BASIC GEGOMETRY
READ(5,3) LyR,DELTA
WRITF(6,12) LyR,DELTA *
CALCULATC FUNCTIONS OF THE ELASTICITY CONSTANTS
DO 150 !=],NL
KLLICT)=EXX{E)/ (1a~NUXY (L )eNUYX L))
K120 L) =NUXY{ L) OeKEL LT}

30

s0LS
0LS
80LS
80LS
80LS
30LS
80LS
B8OLS
80Ls
80LS
80Ls
80LS
80LS
80LS
80LS
80LS
80LS
8GLS
80LS
B80OLS
B80LS
8CLS
8CLS
8GLS
BOLS
80LS
8CLS
BOLS
80LS
80LS
BOLS

LS
BCLS
80OLS
8CLS
BCLS
80LS
BOLS
80OLS
80LS
80LS
BOLS
8OLS
80LS
BGLS
BELS
BOLS
BCLS
8oLs
BOLS
BCLS
80LS
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R2212)=EYY413/ 11 .~mUXY(1IOeNUYR{1)D)
150 K33(1)=GXY(I)

C CALCULATE OEL®*S OF THE VARIOUS LAVERS
00 160 I=1l,NL
CF{1.EQ.1) DEL(L)=T(1)
IFL1.NE.1) DELEX)=DELIZ-1)+T{])

160 CONT INUE

C ADJUSY IR AND IS TO REFERENCE SURFACE
JF(ZR.GT.0.) IR = IR+{DELINL )-DELTA)
IF(25.67.0.) 2S = ISe(DEL(RL)~DELTA)
IFIZR.LT.0.) IR = IR-DELTA
JF(23.LT,0.) IS = IS-DELTA

C CALCULATE EXTENSIONAL, COUPLING, AMD BENDING STEFFNESSES

€ LERD OUT 8°S, C°®Se AND D°S PRIOR TO SUMNATION
811=0,
812=0,
822=0.
833sQ.
C11=0.
C12=0.
C22=0.
C33=0.
011=0.
D12=0.
022=0.
033=0.
00 190 I = 1,NL
IF{1.NE.1) 60 TO 170
EXT=DELL])
COUPS{1./72.)%(DEL(1)982-2,9DELTA®IEL(1))

BEND=(1./3.40(0DEL{1)#43-3,50ELTASDEL {1)#8243 . SDELTA®S230EL(L))

60 1O 180
170 EXT=DEL{I}-PEL(I-1)

LS
aLs
LS
BOLS
80LS
8OLS
8OLS
soLs
BOLS
sOLS
sOLS
B0LS
soLS
BOLS
8CLS
BOLS
alLs
8oLs
8OLS
8oLs
80LS

COUP={1./2.)%{ {DELI1)®®2-DEL(1-1)902) -2, *DELTASIDEL(1)-DEL{I-1))) BOLS
BEND=(1./3,)8({DEL(]}9¢3-DEL(1-1)983)-3,SDELTAS(DEL(I)*s2-DELII-1)B0LS

1982) 43, 0DEL TASS20 (DELLI)-DEL(1-1)))

180 D11=d11+K2il 1)SEXT
B12=B12¢K120 IISEXT
822=B22¢K22( 1)9EXTY
B33=833+K32L 1) *EXT
Cli=Cl1eK1l)(1)*COUP
Cl2aC12+K1: (1) oCOUP
C22=C224K22 1)sLOUP
C33=C334K33 f)eCOUP
Ol1=0114K1} 1)®BEND
01220124127 1)$BEND
022=D224K22(1)*BEND

190 033=D33+4K33{ J)*BEND

C INITIALIZE

ABSHI'i=, TE3S
IF{LUAD.EQ.2.} GO TO 300

[aNaNal

INITIALIZE
AXIM=4, SNF
=MD
ORONML=, 8E35
OR[MM2=,9E35
200 MPL=M*P]/L
C CALCULATE A VALUES
ALl= [BLL4BX4ESAAS/B) SNPL OS2
Al2#0.
AlL3=(B124NUXYBSBX) SHPL/RE(CLIGESSASSIS/BISNPLEw]
A220TB3I43XY IS NPLE 2
A23=0.

CALCULATE AXISYMMETRIC BUCKLING LGADS UNDER AXIAL OR HYDRQS TIC
LCADING FOR A RANGE OF MO TO 4%MF, AND PRINT WINIMUK LOAD

80LS
20LS
80LS
sOLS
80LS
SOLS
80LS
80LS
80LS
80LS
80LS
8QLs
80LS
BOLS
BOLS
80LS
80LS
80LS
80LS
BOLS
80LS
aoLs
B0LS
B8GLS
80LS
8O0LS
80LS
BOLS
8CLS
aaLs

A33=(DL1¢OX4ESSIS/BEESSASEISSS2/D)SMPLOSA4 (2. /R)PCI2OMPL 2+ (1. /RSU0LS

192)#(82248BY+ERSAR/A)

80LS

PART=A334((A120A23-A132A22}/7(A118A22~A12082) )8AL34((A1206AL ~A119#A2BCLS
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102
103
104
105

107
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109
110
111
112
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118
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119
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124
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130
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133
134
135
136
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138
139
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13071A118A22-A12092))8A2) ks
TESY FOR TYPE OF LOADING, CALCULATE BUCKLING LOAD (NX OR PRESSURE], BOLS
AND STORE LOAD IN ADORESS ORDR (OROINATE AT ABSCISSA M) SOLS
EF(LOAD.EQ.1.] ORDW=PART /NPLO®2 S0LS
IF(LOAD.EQ.3.) GROR=PART/7( .50RPLO®2) LS
TEST FOR ABSOLUTE NININUN ARISYMNETRIC BUCKE ‘NG 1.OAD BOLS
ORDAM. 1S THE ORDINATE AT ABSCISSA W~} SO0LS
QRDMN2 % THE ORDINATE AT ASSCISSA W2 0L
TEST TO SEC WHETHER ORDN IS INCREASING OR DECREASING s0LS
IF (ORON.GY .OROMRL) GO TO 210 0LS
ORDR DECREASING FROR OR EQU.AL TO ORDANL s0LS
IFEN.EQG.AXIN] WRITE(6419) ORDM A sotLs

63 710 230 LS
ORDM INCREASING FRON ORDMNL sOLS
210 IF(ORDOMM2.6T.0RDMM]) GO TO 220 SOLS
NO RELATIVE NININUN FOUKD soLsS
60 10 230 sOLS
TEST FOR ABSOLMTE MINIAUN 30LS
220 IF(OROMML.GCI. ABSHEIN) GO YO 230 soLs
NEN AOSOLUTE NMINIMUN FOUND 80LS
ADSHIN=0RDANL SOLS
ABSH=N-~1. aoLs
ABSN=0. 80LS
230 IFIN.EQ.AXIN) GO TO 240 30LS
STerP soLs
Hapol. 80LS
ORDHAN2=DROMNL 10 R
OROMMI=ORON 80LS

60 70 200 saLsS
WRITE NXTSYMMETRIC BUCKLING LOAD BOLS
240 IF{LOAD.EQ.L.) WRITE(6¢13) ABSKIN,ABSH 8oLS
IFILOA”, .EQ.3.) WRITE(6914) ABSHIN,ABSM BOLS
CALCULAT": ASYMMETRIC BUCKLING LOADS FOR A SPECIFIED RANGE OF M AND N 80LS
INITIAL IS sOLS
300 MeNO S0LS
AMONML=, SE3S 8OLS
IF(LOAD.EQ.2.) WRITE(6.15) 80LS
8EGIN K LOOP B0LS
310 MPL=NePI /L 80LS
INITIALIZE FOR N LOOP soLs
N=NQ 8OLS
ORDNML1=, BE3S soLs
ORDNN2=,9E3S aoLs
BEGIN N LOOP BOLS
32C KR=N/R 14 B
CALCULATE A VALUES 80Ls
AL1»(BLLeBXCESSAS/B)IONPLES 20 (B3 2¢BXY )SNRSP2 80LS
AL2=(B124NRUXYVESAX+B8II+BXY) SNPLENR 8aLs
Al3=(B124KUXYBSBX) *HPL/R(CLI4ESPASSIS/B)*NPLE®3¢(C2242,8033)¢NPLSBOLS
INR®s2 80LS
A22n(B334BXYIEMPLOS24(B224BYSERSAR/A)ENR 892 8oLS
A23=(C1242.%C33)ONPLI*24NR¢(B22+BY+ERSAR/A)*NR/R+ (G224 ERSARSIR /A)BOLS
INR#s) 80LS
A332 (D1140X4ESOIS/QeESSASHISO92/B)0MPLSC 4e (2.8 (D124NUXYDSDX} +4.2(DBOLS
1334DXY)4GSIS/BOGRIR/AIOMPLIS2ONR 824 [D224DV4ERSIR/A+ERGAROIR®E2/A)BOLS
2ONRPIA{2, JRICCLLONPLSS24( 2. /RIS{C224ERT ARSIR/AISNRSS24 (1, /RO$2)£{BOLS
3B224BY+ER®AR/A) BOLS
PART=A33¢((A120A23~A130A22)/(A119A22-A12%%2) )%AL34{(A12%A13~-AL1%A2BOLS
13)/7(A11%A22-A128%7))2223 80LS
TEST FOR TYPE OF LOADING, (ALCULATE BUCKLING LOAD (NX GR PRESSURE), BOLS
AND STORE LOAD IN ADDRESS ORON (ORDINATE AT ABSCI15SA W) BOLS
IF(LOAD.EQ. 1 JORDNSPART/HPLSS2 80LS

IF (LOAD.EQ.2.) ORDN=PART RONR®92) 80LsS
IFCLOADCEQ.D . }ORDN=PARY /[RO{ ,SEMPLES24NRS#2) ) 8o0Ls
BEGIN TEST FOR RELATIVE MINIMA ANC ABSOLUTE MININUM B8oLsS
JRONM1 IS THE ORDINATE AT ABSCISSA N-1 80Ls
GRONM2 IS THE ORDINATE AT ABSCISSA N-2 BOLS
VEST FOR £QUAL OR MEAR EQUAL ORDINATES B80OLS
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166
167
168
169
170
171
172
173
174
134
176
1344
1718

ko
181
182
183
184
188

187
188
189
190
191
192
193
194
195
196
197
iss
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
73]

232
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IFCASS(2 ¢ (ORDX-ORONRL )/ (ORONCRONRL § ) 6T 1E-3) 60 TO 330
- « OfDINATES ARE CLOSE ENOUGH TO CAUSE TAOUBLE IN THE SEARCH FOR
C RELATIVE RINIRA, SO BEST [usnssavinn IS TO MRITE ORDINATES
Mi=N—-1,
WRITE 69210 Ny ORDNNE o NNL oMo ORPN. N
¢0 70 380
C TEST TO SEE YHETHER ORDN IS INCREASING OR OECREASING
330 IFICRON.GCT.ORDMNL) GO TO 340
C ORDN DECREASING
IFIN.EQ.NF) MRITEL6,20)
G0 Y0 380
C ORDK INCREASING
340 IFC(ORDMNZ.CT.ORDMNI) CO TO 350
C NO RELATIVE MININUM
60 TC 340
C TEST FOR ABSOLUTE NINIMUM
C ANOM] IS THE ABSOLUTE MININUR VALUE OF OROM IN THE NF-1 LOOP
350 IFIN.EQ.AF~1..AND.ORDNNE LT ANCNNL) ANONNI=ORDNIt1
IFUNLEQe WF cAND SN0 NE F L AND L ORDNNL. L T.ANONNLS WREITE(6,19)
360 IF(ORONN1.CT.ARSNIN) GO YO 370
€ NEW ABSOLUTE RIKINUM FOUND
ABSRIN=ORDNN1
ABSKs=N
ABSHsN~-1.
370 RELMIN=CRONK])
RELN=N-1.
C WRITE RELATIVE NINIMUM METH CORRESPONOING R AMD N
WRITFE{6, 16 5MRELRING RELN
380 IFIN.EQ.NF) GO TO 390
C STEP N
* N=Ne 1,
ORDNM2sORDNNL
ORDNN1=0ORDN
60 T0 320
N 390 IF(M.EQ.NF) GO TO 395
C STEP M
NAspel,
60 10 Jl10

C MWRITE ASSOLUTE MINIKUM NITH CORRESPONDING M ANO N
395 JF(LOAD.EQel.) WRITE(6,17)ABSHIN,ABSMH,ABSN
§ IF(LCAD.€Q.2.) WRITE(6418)ABSHIN,ABSH,ABSN
L TF(LOAD EQe3.) WRITE(6918)ABSNINIABSN,ABSN
kB C RETURN YO B. NNING TC READ NEXT DATA CASE
; 60 70 100
L END

L
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SOLS 254
BOLS 255
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APPENDIX D

BONDLESS, LAYERED SHELLS

The o»jective is to define a mathematical model for a circular
cylirdrical shell of multiple isotrcpic layers with no bond between
the layers. This configuration is of interest as a lower bound to
layered shells with shear-deformable bonds between the layers. The
Kirchhoff- Love hypothesis is employed in all previous sections, but is
valid only if the bonds between layers are non-shear-deformable.
Accordingly, certain new definitions must be established. It is con-
venient to work within the framework of the orthotropic stiifness
layer feature of the computer program (see Section A.2 of
Appendix A). Certain stiffnesses and so-called Poisson's ratios
must be defined, namely, quantities associated with extension
(B, B, B

y’ xy’
(Dx’ Dy’ ny, and v

and nyB) and those associated with bending

xyD) '

The extensional stiffness of a layered shell is not affected by the

presence or absence of a bond between the layers, i.e., it remains

N
BX:BY:ZBk (D-1)
k=1

Similarly, the resistance to in-plane shear is unaffected, so

N
Bxy —'-Z Bk (1 - vk) /2 (D-2)
k=1
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If the force-strain rciations are written in the form

N
N =Z By (e * ity
ko1

(D-3)
N
= +
NY E B, (eyk Vi €
k=1
and it is stipulated that the layers have the same strains, i.e.,
“xk - ®x
k=1 N (D-4)
Yk Cy

= VB_—N'—-———— (D"S)

Note that YR is a geometrical as well as a material property.

The bending stiffness of a bondless, layered shell is the sum of
the bending stiffnesses of the individual layers since the layers act
with some measure of independence except for the requirement that the

layers do not separate, i.e.,

N
Dx = Dy =Z Dk (D-6)

k=1

36




where Dk is the bending stiffness of the kth layer about its own middlie

surface. Note that there are no terms such as occur in the transfer axis
theorem for moments of inertia, i.e., no (area) times (distance squared)

terms. Consequently, the bending stiffness is greatly decreased from

the perfect bond case.

The consistent definition for the twisting stiffness follows from

the stipulation that each layer independently resists twisting. Thus,

N
D, =Z D, (1-v,) /2 (D-7)
k=1

In aralcgy to the situation for extension, it is stipulated that the

layers have the same changes in curvature, i.e.,

xk:Xx

I (D-8)
ka = Xy

Then the so-calied Poisson's ratio for bending is obtained by use of

the moment-change in curvature relations as

xyD D (D-9)

Again, as with v B YD is a geometrical as well as a material
property.

The above approach implies that the layers have the same dis-

placements and the same curvatures, i.e., all layers take the same
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shape. This implication is reasonable as long as the layers do not
separate.

When the layers are in contact, the membrane circamieren-
tixl strain is essentially the same in all layers if the su.n of the layer
thicknesses divided by the radius of the shell reference surface . small,
i.e., a thin, layered shell. Thus, under lateral pressure, which is
carried as membrane circumferentiai stress, :ry , in the present

buckling theory, "y in the kth layer is proportional to the exten-

sional stiffness of the kth layer. Accordingly, the lateral pressure

on each layer is given by

B
= k

PN
k:

*p (D-10}
2B
1
where p is the lateral pressure on the layered shell. Thus, as a
crude lower bound to the case of a bondless, layered shell, each
layer must be thick enough to resist buckling under the pressure
determined by Eq. (D-10). In addition, the layered shell with stiff-
nesses given by Eqs. (D-1), (D-2),(D-5), (D-6), (D-7), (D-9) must
be thick enough to resist buckling under p.

Eccentrically stiffened, bondless, layered shells can be treated
by appending stiffeners to the orthotropic stiffness laver in the manner

discussed at the end of Section A.2 in Appendix A.
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APPENDIX E
TWO-LAYERED, BONDLESS SHELLS WITH CIRCUMFERENTIAL
CRACKS IN THE OUTER LAYER

The objective is to define a mathematical model for a circular
cylindrical shell which has two unbonded, orthotropic layers and cir-
cumferential cracks in the outer layer (see Figure E-1). The princi-
pal axes of orthotropy must coincide with the shell coordinate axes.
The orthetropic stiffness layer feature of the computer program (see
Section A. 2 of Appendix A) is used in the calculations. Accordingly,
certain stiffnesses and so-called Poisson's ratios must be defined,
namely, quantities associated with extension (Bx, By’ Bxy’ and
nyB) and those associated with bending (Dx, Dy’ ny, and vxyD)'

Because of the circumferential cracks in the outer layer, the
extensional stiffness in the axial directior. 18 merely that of the
inner layer, i.e., sz = 0. However, both layers are effective in

resisting circumferential extension. Thus,

B. = B
X x1
(E-1)
B =B + B
y yl y2
No axial strain develops in the outer layer, i.e., €2 © 0. Thus,
the force-strain relations are
Nx i Bxl (exl ¥ YxyB1 Eyl)
) (E-2)
NY By1 (ey1 +vyxBl exl) + ByZ €2
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Figure E-1. Cutaway View
with (Exagger

of a Two-Layered Circular Cylindrical Shell
ated) Circumfcrential Cracks in the Outer Layer
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Moreover, because the layzrs do not separate circumferentially,

€

?e = €

E-3]
yi y2 y (E-3)
Accordingly, the force-strain relations become

Nx = Bx (Ex * VxyB Ey)

N B v € E-4
y y Yy T s (E-4)

i

where Bx and BY are defined in Eq. (£-1), and

YxyB VxyB1

(E-5)
VyxB : VyxB1 Byl /(Byl ¥ ByZ’
Note that the reciprocal relations
nyB Bx = vyxB By (E-6)

are satisfied for the two-lavyered shell because they are satisfied

for the inner layer, i, e.,

YxyB1 Bx1 * Vyxm1 By (E-7)

For an isotropic inner layer, Eq. (E-7) is an identity.

The inner layer carries all the in-plane shear because the
outer layer is cracked. Thus,

Bxy xyl (E-8)
For an isotropic inner layer,

BXyl = E1t1/2(1 + "1) (E-9)
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Reasoning parallel to the above leads to the following defini-

tions for the quantities associated with bending.

b D

x x1
(E-10)
D =D ,+D
y yl “y2
VxyD = YxyDl
(E-11)
vny = 'nyl DyI/(Dyl +Dy2)
ny = nyl (E-12)
where, for an isotropic inner layer,
- 3 v
nyl = Elt:1 /24 (1 + 1) (E-13)
in the definitions in Eqs. (E-10) to (E-12), it is implicit that
X , =2 X =X (E-14)

yl y2 y

in analogy to Eq. (E-3). Both Egs. (E-3) and (E-14) are a result of
no circumferential separation ¢f layers. In addition, it should be
noted that the bending stiffnesses of the layers in Eq. (E-16) are
about the middle surface of the respective layers because o. the lack
of bonding between layers.

Eccentrically stiffened, bondless, layered shells with circum-
ferential cracks can be treated by appending stiffeners to the ortho-
tropic stiffness layer in the manner discussed at the end of Section

A.2 of Appendix A.

42




Y
- oty

.Ml\s‘g"@
PPN vt

. P . IR e I AP o e ee—— :t,:ﬂu}w’;:‘;,"%ﬂ"ﬂ. e Jﬁ

TR At 408

REFERENCES

Van der Neut, A., The General Instability of Stiffened Cylindrical

Shells under Axial Compression, Report S.314, National Aeronau-

tical Research Institute (Amsterdam) (1947).
Baruch, M., and Singer, J., ""Effect of Eccentricity of Stiffeners
on the General Instability of Stiffened Cylindrical Shells under

Hydrostatic Pressure,’ Journal of Mechanical Engineerino Science,

Vol. 5, No. 1, pp. 23-27 (March 1963).

Block, David L., Card, Michael F., and Mikulas, Martin M. Jr.,

Buckling of Eccentrically Stiffened Orthotropic Cylinders, NASA
TN D-2960 (August 1965). .

McElman, Joan A., Mikulas, Martin M., Jr., and Stein, Manuel,
"Static and Dynamic Effects of Eccentric Stiffening of Plates and

Cylindrical Shells," AIAA Journal, Vol. 4, No. 5, pp. 887-894

(May 1966).

Card, Michael F., and Jones, Robert M., Experimental and

Theoretical Results for Buckling of Eccentrically Stiffened Cylinders,

NASA TN D-3639 (October 1966). Also condensation appeared as
"Buckling of Axially Compressed Cylinders with Eccentric Longitudinal

Stiffeners,'' AIAA/ASME Seventh Structures and Materials Conferencg

(AIAA, New York, 1966), pp. 23-34.
Hutchinson, J. W., and Amazigo, J. C., "Imperfection Sensitivity

of Eccentrically Stiffened Cylindrical Shells, " AIAA Journal, Vol. 5,

No. 3, pp. 392-401 {March 1567).

43




T ATy TR

cysias
e i s o -
.

O TAT A

s st g e

s Pt oy

RN

RRLTs Taa LT o R B

10,

11.

REFERENCES (Continued)

Block, David L., "Influence of Prebuckling Deformations, Ring
Stiffeners, and Load Eccentricity on the Buckling of Stiffened

Cylinders,'" Proceedings of the AIAA/ASME 8th Structures,

Structural Dynamics & Materials Conference {Palm Springs,

Calif. ), pp. 597-607 (March 1967).
Jones, Robert M,, ""Plastic Buckling of Eccentrically Stiffened

Circular Cylindrical Shells,' AIAA Journal, Vol. 5, No. 6,

pp. 1147-1152 (June 1967).

Ambartsumyan, S, A., Theory of Anisotropic Shells, State

Publishing House for Physical and Mathematical Literature,

Moscow (1961). Also NASA TT F-118 (May 1964).

Geier, Bodo, '"Beullasten versteifter Kreiszylinderschalen, "
presented at the 4th European Air Travel Congress, Munich,
1-4 September 1965,

Jones, Robert M. and Klein, Stanley, Equivalence Between

Single-layered and Certain Multilayered Shells, TR-100!

(S2816-72)-2, Aerospace Corporation, San Bernardino,
California (June 1967). (Available to qualified requestors only

frcm the Defense Documentation Center, Alexanuria, Virginia.)

44

v

A et




P Sy

UNCLASSIFIED
Secuiity Cleesification

DOCUMENT CONTRO!. DATA - R&D

(Security classilication of title, body of abatrect end indzxing

st bo entored when the cverell report is clessilied)

-

ORIGINATIN G ACTIVITY (Ceorporate suther) 26. REPORY SECUR. (Y C LASSIFICATION

Unclassified

Aerospace Corporation 25 emour _
San Bernardino, California

3 REPORT TITLE

Buckling of Circular Cylindrical Shells with Multiple Orthotropic
Layers and Eccentric Stiffeners

4 DESCRIPTIVE NOTES (Type of report snd inclusive dates)

Technical Report

S AUTHOR(S) (Last name. fizet name, Inftisl)

Robert M. Jones

6 REPORT DATE 78 TYOTAL NO OF PAGES 75 NO OF Rers
September 1967 52 11
80 CONTRACT OR GRANT NO. 98 ORIGINATOR'S REFORT NUMBER(S)
F04695-67-C-0158
b PROJECT NO TR-0158(S3820-10)-1

c

. 81'”:! :Jlol'r NO(S) (Any other numbers that may be sssigned
ie repo

d SAMSO-TR-67-29

10 AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

11 SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIV§TY

Space and Missile Systems Organization
Air Force Systems Command

An exact solution is derived for the buckling of a circular cylindrical shell
with multiple orthotropic layers and eccentric stiffeners under axial
compression, lateral pressure, or any combination thereof. Classical
stability theory (membrane prebuckled shape) is used for simply supported
edge boundary conditions. The present theory enables the study of coupling
between bending and extension due to the presence of different layers in the
shell and to the presence of eccentric stiffeners. Previous approaches to
stiffened multilay crel shells are shown to be erratic in the prediction of

buckling results due to neglect of coupling between bending and extension.
(Unclassified Report)

Norton Ajr Force Base, California 92409 |}
13 ABSTRACT

pp " uan UNCLASSIFIED

Secunty Classificahon

i

TR vt ke B e s e o RY A T ey, %"’“:WW A it

RIP R IPS N Ve

. PRSI
SRS DRI - Wi LR SR




Security Classification

14
¢ KEY WORDS

Shells

Buckling

Stability

Layered Shells
Eccentric Stiffeners

-3
%
A
’ig‘
¥

Abstract (Coatinued)

UNCLASSIFIED

Securnity Classification

e #

Fin et it e < FLY =

[E I YR AN L L

R~

s




S———— /-.
. R4

Dy (6o 534

FROM REPORTS CONTROL

—Bldg. B-2_foon 260 peerive)

FEB 27 1968
INPUT S£CTION
e CLEARINGHOUSE

BLDG. TO

..

ROOM

Reference: Addendum and Errata for

Buckling of Circular Cylindrical Shells with

Multiple Orthotropic Layers and Eccentric Stiffeners
Aerospace Report No. TR-0158{53820-10)-1,
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1. Delete Eq. (D-10) and the discussion in the surrounding paragraph on
page 38 as the shell buckling analysis is unduly conservative if the
deleted considerations are imposed. That is, an inner layer when
constrained by an outer layer would be expected to buckle at a very
much higher load than that of the unrestrained shell implied by the
deleted considerations. The buckling load of the constrained shell
would be expected to be higher than that determined by the model
discussed in Appendix D. Thus, the model in Appendix D appears
to be the most reasonable model which could be devised.

2. Replace Appendix E (pages 39 through 42) with the attached revised
pages.

¢ / i ,zél//g

. A. Berggtralh, General Manager
Technology Division

AEROSPACE FORM 180 REV 1.67




. » .
L ov e oo . ~ A
e ’ ! " N
SERY '-’;Em\u AR IR LA S PP

B e A s

G e e

APPENDIX E

TWO-LAYERED, BONDLESS SHELLS WITH CIRCUMFERENTIAL
CRACKS IN THE OUTER LAYER

The objective is to define a mathematical model for a circular cylindrical

shell which has two unbonded, orthotropic layers and circumferential cracks

in the outer layer (see Figure E-1). The principal axes of orthotropy must

coincide with the shell coordinate axes. The orthotropic stiffness layer
feature of the computer program (see Section A.2 of Appendix A) is used in
the calculations. Accordingly, certain stiffnesses and so-called Poisson’s

ratios must be defined, namely, quantities associated with extension (Bx, B
B

’

y
, and v ) and those associated with bending (D_, D, D_, and v ).
Xy xyB x" Ty’ Txy xyD

Because of the circumferential cracks in the outer layer and the lack
of bonds between layers, the axial force in the outer layer is zero, i.e.,

N, =B

x2 +

xz x2 ¥ Vxym2 €y2) = 0 (E-1)

The remaining segments of the outer layer are analogous to plane stress

ring elements, the axial stiffness of which is finite. Accordingly, from
Eq. (E-1),

€x2 = VxyB2 ‘y2 (E-2)

The force-strain relations can then be written as

Nx B Bxl (exl * vxyBl eyl)
(=-3)
Ny - Byl (Eyl ¥ VyxBl EJ»:l) * ByZ (EyZ i VyxBZ ex?.)
Moreover, because the layers do not separate circumferentially,
€ e =€ E-4
yl.  "y2 'y (E-4)
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Figure E-1,

Cutaway View of a Two-Layered Circular Cylindrical Shell
with (Exaggerated) Circumferential Cracks in the Outer Layer
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whereupon, with Eq. (E-2), the force strain relations become

Nx = Bx (ex + nyB ey)
(E-5)
Ny=By(ey+vaBsx)
where
Bx = Bxl
(E-6)
By = Byy + By {1 - Vone Yaym2!
x ~ x1
and
vxyB = vxyBl
(E-7)
vyxB - vyxBl ByllBy
Note thatl the reciprocal relations
vxyB Bx = vyxB BY (E-8)

are satisfied for the two-layered shell because they are satisfied for the

inner layer, i.e.,

VxyB1 Bet © (£-9)

VoxB1 Dyl
For an isotropic inner layer, Eq. (E-9) ie an identity.

The inner layer carries all the in-plane shear because the outer layer

is cracked. Thus,

B =B (E-10)

For an isotropic inner layer,

- 2
Bxy1 _Eltll.(l +v,) (E-11)
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Reasoning parallel tc th: above leads to the following definitions fﬁ
the quantities associated with bending: o<
Dx = Dxl
Dy = Dyl + DY2 (1 -v D2 vxyDZ) {£-12)
D =D
xy xyl
and
vxyD - VxyD1
(E-13)
VyxD = VyxD1 Py1/Dy
where, for an isotropic layer,
_ 3
nyl = Eltll 24(1 + vl) (E-14)
In the definitions in Eqs, (E-12) and (E-13), it is implicit that
E = E-15
X vyl Xyz Xy { )
and
Xe1 = Xy (E-16)

in analogy to Eqs. (E-4) and (E-6). Both Eqgs. (¥.-4) aud (E-15)

are a result of no circumferential separation of layers. (n addition, it
should be noted that the bending stiffnesses of the layers in Eq. (E-12)
are about the middle surface of the respective layers because of the lack

of bonding between layers.

Eccentrically stiffened, bondless, layered shells with circumferential
cracks can be treated by appending stiffeners to the orthotropic stiffness

layer in the manner discussed at the end of Section A. 2 of Appendix A.
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